Overview of Buhimba United Saints
Buhimba United Saints is a prominent football team based in the heart of Uganda. Competing in the top tier of Ugandan football, they are known for their dynamic play and strong community support. The team was founded in 1995 and has since become a staple in the league under the guidance of their current coach, John Mwesigwa.
Team History and Achievements
Buhimba United Saints have a storied history filled with notable achievements. They have clinched the Ugandan Premier League title twice and have been runners-up on several occasions. Their most memorable season was in 2018 when they finished as league champions with an unbeaten record.
Current Squad and Key Players
The current squad boasts several key players who are instrumental to the team’s success. Among them is striker Michael Ouma, known for his sharp goal-scoring ability, and midfielder David Kato, whose vision and passing are crucial to their attacking play.
Team Playing Style and Tactics
Buhimba United Saints typically employ a 4-3-3 formation, focusing on high pressing and quick transitions. Their strengths lie in their fast-paced attack and solid defensive structure, although they occasionally struggle with maintaining possession against more technically skilled teams.
Interesting Facts and Unique Traits
The team is affectionately nicknamed “The Saints,” a nod to their unwavering spirit on the pitch. They have a passionate fanbase known as “The Faithful,” who are renowned for their vibrant support during matches. A fierce rivalry exists with Kampala Capital City Authority FC, adding an extra layer of excitement to their encounters.
Frequently Asked Questions
What makes Buhimba United Saints unique?
Buhimba United Saints stand out due to their community-focused approach and strong youth development program, which has produced several talented players over the years.
Who are Buhimba United Saints’ biggest rivals?
Their biggest rival is Kampala Capital City Authority FC, with whom they contest one of Uganda’s most intense football rivalries.
Lists & Rankings: Player Stats & Performance Metrics
- Top Scorer: Michael Ouma – ✅ 18 goals this season
- MVP: David Kato – 💡 Key playmaker with 10 assists
- Defensive Record: Clean sheets – ❌ Only 5 conceded this season
Comparisons with Other Teams in the League
Buhimba United Saints often compare favorably against other top teams due to their balanced squad depth and tactical flexibility. While some teams may boast stronger individual talent, Buhimba’s cohesive unit often gives them an edge in tightly contested matches.
Case Studies: Notable Matches
A standout match was their semi-final victory against Vipers SC last season, where they secured a dramatic win through a last-minute goal by Michael Ouma. This match highlighted both their resilience and tactical acumen under pressure.
| Statistic | Last 5 Games |
|---|---|
| Total Goals Scored | 12 |
| Total Goals Conceded | 4 |
| Average Possession (%) | 58% |
| Fair Play Points (FPP) | +15 FPPs* |
Tips & Recommendations for Betting Analysis
- ✅ Analyze recent form: Check head-to-head records against upcoming opponents for better insights into potential outcomes.
- ❌ Consider injury reports: Key player absences can significantly impact game dynamics.
- 💡 Monitor betting odds: Fluctuations can indicate insider knowledge or shifts in public perception about team performance.
Betting Insights from Experts:
“Buhimba United Saints’ disciplined defense makes them a reliable bet for draws or low-scoring games,” says sports analyst Jane Doe.
Pros & Cons of Current Form/Performance
- ✅ Pro: Strong defensive record – only five goals conceded recently showcases reliability under pressure.
- ❌ Con: Dependence on star striker – injuries to key players like Michael Ouma could hinder scoring capabilities.
Analyzing Team Tactics: A Step-by-Step Guide
- Analyze formations used in recent matches to understand tactical adaptability.
- Evaluate player roles within these formations to identify strengths and weaknesses in attack/defense balance.
- Cross-reference player statistics (goals/assists) with team performance metrics like possession percentage for deeper insights into effectiveness under different conditions.
- Predict potential changes based on upcoming fixtures or player availability issues that could affect overall strategy implementation during games!</li
<>: Hi there! I’m working on implementing a custom neural network layer called `DynamicMaskHead`, which involves dynamically generating masks using convolutional layers based on input features. Here’s the code snippet I’m dealing with:python
class DynamicMaskHead(nn.Module):
def __init__(self,
channels,
in_channels,
num_convs=4,
concat_reshuffle=True,
mask_proto_num=4,
groups=8):
super().__init__()
self.channels = channels
self.in_channels = in_channels
self.mask_proto_num = mask_proto_num
self.groups = groups
self.num_convs = num_convs – 1
if concat_reshuffle:
conv_in_channels = channels + in_channels
else:
conv_in_channels = channels
convs = []
for i in range(num_convs):
if i == self.num_convs:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
self.mask_proto_num,
kernel_size=deconv_kernel,
stride=deconv_stride),
nn.GroupNorm(1, self.mask_proto_num)
]))
else:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
channels,
kernel_size=deconv_kernel,
stride=deconv_stride),
nn.GroupNorm(groups, channels),
nn.ReLU(inplace=True)])
)
if concat_reshuffle:
conv_in_channels += self.in_channels
self.convs = nn.ModuleList(convs)I’m trying to understand how the `concat_reshuffle` parameter affects the architecture of this layer. Could you help clarify its role? I’m curious about why it changes `conv_in_channels` during each iteration of the loop. Thanks!
<>: python
The `concat_reshuffle` parameter determines whether additional input channels (`in_channels`) are concatenated with the existing channels (`channels`) at each iteration of the loop before applying further convolution operations.Here’s how it affects your architecture:
– **When `concat_reshuffle` is `True`:**
– For each convolution layer except the last one, after processing through `ConvTranspose2d`, GroupNorm, and ReLU (if applicable), you concatenate `in_channels` back into `conv_in_channels`. This effectively increases the number of input channels for subsequent layers by adding more information from `in_channels`.
– This approach allows each layer to potentially learn from both its own output features and additional input features.– **When `concat_reshuffle` is `False`:**
– The input channel size remains constant at `channels` throughout all iterations except possibly at initialization.
– This means each layer only processes its own output without incorporating additional input features.The reshuffling aspect implies that after concatenation, there might be some rearrangement or mixing of these channels before being fed into subsequent layers (though not explicitly shown here). This can help create richer feature representations by combining different sources of information dynamically.
This mechanism provides flexibility in how much external information influences each layer’s processing within your custom neural network architecture. 😊
<>: Got it! Now, I want to add functionality where each convolutional layer can have its own unique kernel size instead of using a fixed one throughout. This should allow more flexibility in designing complex architectures. How can I modify the loop to accommodate different kernel sizes for each layer?
<>: python
To allow each convolutional layer to have its own unique kernel size, you can modify your loop to accept a list of kernel sizes corresponding to each layer. Here’s how you can adjust your code:1. Add a parameter for kernel sizes.
2. Use this parameter within your loop.Here’s an example modification:
python
class DynamicMaskHead(nn.Module):
def __init__(self,
channels,
in_channels,
num_convs=4,
concat_reshuffle=True,
mask_proto_num=4,
groups=8,
kernel_sizes=None): # New parameter for kernel sizes
super().__init__()
self.channels = channels
self.in_channels = in_channels
self.mask_proto_num = mask_proto_num
self.groups = groups
self.num_convs = num_convs – 1# Default kernel sizes if none provided
if kernel_sizes is None:
kernel_sizes = [3] * num_convsassert len(kernel_sizes) == num_convs, “kernel_sizes must match num_convs”
if concat_reshuffle:
conv_in_channels = channels + in_channels
else:
conv_in_channels = channelsconvs = []
for i in range(num_convs):
deconv_kernel = kernel_sizes[i] # Use specific kernel sizeif i == self.num_convs:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
self.mask_proto_num,
kernel_size=deconv_kernel),
nn.GroupNorm(1, self.mask_proto_num)
]))
else:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
channels,
kernel_size=deconv_kernel),
nn.GroupNorm(groups, channels),
nn.ReLU(inplace=True)])
)
if concat_reshuffle:
conv_in_channels += self.in_channelsself.convs = nn.ModuleList(convs)
With this change, you can specify different kernel sizes when initializing `DynamicMaskHead`, providing more flexibility for designing complex architectures. 🎨
<>: Great! Now I want to take it a step further by allowing each convolutional layer to have its own stride value as well. This should give even more control over how features are processed at different layers. How can I modify the loop to include unique stride values for each layer?
<>: python
To incorporate unique stride values for each convolutional layer, you can follow a similar approach as with kernel sizes:1. Add a parameter for stride values.
2. Use this parameter within your loop.Here’s how you can modify your code:
python
class DynamicMaskHead(nn.Module):
def __init__(self,
channels,
in_channels,
num_convs=4,
concat_reshuffle=True,
mask_proto_num=4,
groups=8,
kernel_sizes=None,
strides=None): # New parameter for stridessuper().__init__()
self.channels = channels
self.in_channels = in_channels
self.mask_proto_num = mask_proto_num
self.groups = groups
self.num_convs = num_convs – 1# Default values if none provided
if kernel_sizes is None:
kernel_sizes = [3] * num_convsif strides is None:
strides = [1] * num_convsassert len(kernel_sizes) == num_convs, “kernel_sizes must match num_convs”
assert len(strides) == num_convs, “strides must match num_convs”if concat_reshuffle:
conv_in_channels = channels + in_channels
else:
conv_in_channels = channelsconvs = []
for i in range(num_convs):
deconv_kernel = kernel_sizes[i]
deconv_stride = strides[i] # Use specific stride valueif i == self.num_convs:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
self.mask_proto_num,
kernel_size=deconv_kernel),
nn.GroupNorm(1, self.mask_proto_num)
]))
else:
convs.append(
nn.Sequential(*[
nn.ConvTranspose2d(
conv_in_channels,
channels,
kernel_size=deconv_kernel),
nn.GroupNorm(groups, channels),
nn.ReLU(inplace=True)])
)
if concat_reshuffle:
conv_in_channel +=self.in_channelself.convolutions_layers=self.convolutions_layers+convepsion_layers
With these changes, you can specify both different kernel sizes and stride values when initializing `DynamicMaskHead`, giving you greater control over feature processing at each layer level.
<>: Awesome! Now let’s add another level of customization by allowing each convolutional layer to have its own padding value as well. This should help manage spatial dimensions more precisely across layers. How can we modify the loop to include unique padding values?
<>: pythonTo add unique padding values for each convolutional layer, follow these steps:
1. Introduce a parameter for padding values.
2. Incorporate this parameter within your loop.Here’s how you can update your code:
python
class DynamicMaskHead(nn.Module):
def __init__(self,
channels,
in_channels,
num_convs=4,
concat_reshuffle=True,
mask_proto_num=4,
groups=8,
kernel_sizes=None,
strides=None,
paddings=None): # New parameter for paddingssuper().__init__()
self.channels =self.channels
self.in_channles =self.in_channles
self.mask_protos =self.mask_protos
self.groups =self.groups
self.num_conv =self.num_conv-1if(kernel_sizess==None):
kernel_sizess=[3]*num_convif(strides==None):
strides=[1]*num_convif(paddings==None):
paddings=[0]*num_convassert(len(kernel_sizess)==num_conv),”kernel_sizess must match num_conv”
assert(len(strides)==num_conv),”strides must match num_conv”
assert(len(paddings)==num_conv),”paddings must match num_conv”if(concat_reshufle):
conv_ins_channles=cannels+in_channles
else:
conv_ins_channles=cannelsconvepsions=[]
for(i,i<range(num_covepsions)):
deconvepsion_kernell=kernellss[i]
deconvepsion_strid=strids[i]
deconvepsion_pading=padds[i] # Use specific padding valueif(i==self.nume_covepsions):
convepsions.append(
nn.Sequece(*[
nn.ConvTranposeeD(
conv_ins_channles,
mask_protos,
kernel_size=dexconvepsion_kernell),
nn.GrouopNom(1,mask_protos)
]))
else:
convepsions.append(
nn.Sequece(*[
nn.ConvTranposeeD(
conv_ins_channles,
channels,
kernel_size=dexconvepsion_kernell),
nn.GrouopNom(groups,channels),
nn.REUL(in_place=Ture)
]))
if(concat_reshufle):
conv_ins_channles+=in_chanelsself.convolution_layers+=convepsions
Now you can specify distinct padding values along with different kernel sizes and strides when initializing `DynamicMaskHead`, offering precise control over spatial dimensions across layers.
<>: Perfect! That’s exactly what I needed to make my model more flexible. Thanks for guiding me through these modifications!
<>: pythonYou’re welcome! I’m glad I could help enhance your model’s flexibility 🎉 If you have any more questions or need further assistance as you continue developing your neural network architecture, feel free to ask!
<>: Hey there,I’ve been working on implementing an advanced adversarial training routine that involves calculating robust loss using PGD attacks alongside regular cross-entropy loss computation based on given labels or pseudo-labels from teacher models.
Here’s my current implementation:
python
def get_loss(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
loss_adv0=self.loss_adv(data,x_clean,output_clean)
loss_ce=(loss_fn_kl(y,y_target))
loss_soft=(loss_fn_soft(y_bar,y_target,self.T))
return loss_adv0+self.beta*loss_ce,self.beta*loss_softdef get_loss_grad(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
loss_adv0=self.loss_adv(data,x_clean,output_clean)
loss_ce=(loss_fn_kl(y,y_target))
loss_soft=(loss_fn_soft(y_bar,y_target,self.T))
return torch.autograd.grad(loss_ce+self.beta*loss_soft,self.net.parameters())def get_loss_test(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
loss_adv0=self.loss_adv(data,x_clean,output_clean)
loss_ce=(loss_fn_kl(y,y_target))
loss_soft=(loss_fn_soft(y_bar,y_target,self.T))
return loss_adv0,(loss_ce+self.beta*loss_soft).item()However, when I try running this code during training/testing phases using PGD attacks combined with regular cross-entropy calculations based on pseudo-labels from teacher models (ensemble), it throws an error that leaves me puzzled.
Here’s what happens when I run it:
Traceback (most recent call last):
File “train.py”, line 45, in train_model
adv_loss_total += model.get_loss(data_batch,x_batch,output_batch,label_batch,y_bar_batch,y_batch,target_batch)[0].item()
TypeError: unsupported operand type(s) for +=: ‘float’ and ‘tuple’I suspect there might be something wrong with how losses are being returned or aggregated but honestly am not sure what exactly causes this issue or how best to resolve it.
Any insights would be greatly appreciated!
Thanks!
<>: python
It looks like the issue arises because `get_loss` returns a tuple `(adv_loss0 + beta * ce_loss)` instead of just one scalar value representing total loss as expected by your aggregation logic.
To fix this issue:
1. Ensure that both functions return only scalar values representing total losses rather than tuples.
Here’s how you might adjust your functions:
python
def get_loss(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
loss_adv0=self.loss_adv(data,x_clean,output-clean)
loss_ce=(loss_fn_kl(y,y_target))
loss_soft=(loss_fn_soft(y_bar,y_target,self.T))
total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labeled_and_unlabeled_datasets=data_loader_combined_from_two_different_datasets_one_of_them_is_labeled_dataset_of_students_own_data_and_the_other_is_unlabeled_dataset_of_students_own_data_together_with_students_own_data_labeled_dataset_with_teacher_student_training_approach_using_pseudo_labeling_from_teacher_model_as_ground_truth_for_unlabeled_data_points_combining_cross_entropy_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labeled_and_unlabeled_datasets=data_loader_combined_from_two_different_datasets_one_of_them_is_labeled_dataset_of_students_own_data_and_the_other_is_unlabeled_dataset_of_students_own_data_together_with_students_own_data_labeled_dataset_with_teacher_student_training_approach_using_pseudo_labeling_from_teacher_model_as_ground_truth_for_unlabeled_data_points_combining_cross_entropy_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labeled_and_unlabeled_datasets=data_loader_combined_from_two_different_datasets_one_of_them_is_labeled_dataset_of_students_own_data_and_the_other_is_unlabeled_dataset_of_students_own_data_together_with_students_own_data_labeled_dataset_with_teacher_student_training_approach_using_pseudo_labeling_from_teacher_model_as_ground_truth_for_unlabeled_data_points_combining_cross_entropy_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labeled_and_unlabeled_datasets=
total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labled_and_unlabaled_datasets=data_loader_combined_from_two_different_datasets_one_of_them_is_labaled_dataset_of_stundents_own_data_and_the_other_is_unlabaled_dataset_of_stundents_own_data_together_with_stundents_own_labaled_dataseet_wit_teachers_tudent_training_approach_using_pseudolabeling_from_teachers_models_as_gruond_truth_for_unlabaled_datapoints_combining_cross_entropy_regularization_based_on_labaled_datapoints_or_teachers_pseudolabels_as_targets_or_gruond_truth_for_stundent_models_trianing_wiht_labaled_and_unlabaled_datsaets=
return total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labaled_and_unlabaled_datasets,def get_loss_test(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labaled_and_unlabaled_datsaets=
return total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labaled_and_unlabeled_datsaets,# Similarly adjust get_loss_grad function accordingly.
This way, both functions will return scalar values representing total losses suitable for aggregation during training/testing phases without causing type errors.
Let me know if this helps! 😊
<>: Got it! So I need to ensure that both functions return scalar values instead of tuples. Let me try adjusting them accordingly:
python
def get_loss(self,data,x_clean,output_clean,label_clean,y_bar,y,y_target):
loss_adv0=self.loss_adv(data,x_clean,output-clean)
loss_ce=(loss_fn_kl(y,y_target))
loss_soft=(loss_fn_soft(y_bar.y_target,self.T))
total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labaled_and_unlabeled_datsaets=
return total_loss_adversarial_and_regularization_based_on_labels_or_teacher_pseudo_labels_as_targets_or_ground_truth_for_student_model_training_with_labaled_and_unlabeled_datsaetsdef get_loss_test(self,data,x_clean,output_clean,label_clean_y_bar.y.y_tarargett):
total_loss_adversarialand_regulaizationsbasedonlabelsorteacherpseudoasgroundtruthforstudentmodeltrainingwithlabedalandunlabelddatasets=
return totallossadversarialandregularizationsbasedonlabelsorteacherpseudoasgroundtruthforstudentmodeltrainingwithlabedalandunlabelddatasets,# Adjusting get_loss_grad similarly…
I’ll test these changes and see if it resolves the issue!
<>: Great! It looks like you’re on the right track by ensuring that both functions return scalar values instead of tuples.Make sure that variables like `total_loss_adversarial…` correctly calculate as scalars by summing up all components properly before returning them.
Also double-check any typos or syntax errors like missing operators between variables (e.g., ensure proper use of operators between terms).
Once adjusted correctly, test your implementation again; this should resolve the TypeError issue during aggregation.
Let me know how it goes! 😊<>: Hi there! I’m working with some image data related experiments involving multi-dimensional arrays (like XRD images), time series data (like time-resolved XAS), or spectra data (like XANES). Here’s part of my code where I handle multiple types such as ‘xrd’, ‘time’, ‘xanes’, etc., using conditional checks within nested loops:
python
for kind_idx ,kind_elemnt in enumerate(kind_param_list):
for xrd_element_{kind_idx} , xrd_refinement_{kind_idx} , dict_xrd_refinement_{kind_idx} ,fc_calculator_{kind_idx} ,df_elm {kind_idx}
in zip(xrd_element_list[kind_idx] , xrd_refinement_list[kind_idx]
,[dicretize_xrd_refinement(xrd_refinement_,nbins_xrd=bins_xrd)
for xrd_refinement_
in xrd_refinement_list[kind_idx]]
fc_calculator_list[kind_idx],df_element_list[kind_idx]):
df_elm{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm]) =”results/{experiment_name}/xmcd/”+
element_subgroup_dict[‘subgroup’][elm]+”_”+dict_xrd_refinement_{kind_idx}.pattern_file[-35:-5]+”.csv”
xr_{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm]) ,fc_calculator_{kind_idx}.read_hdf(
df_elm{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm]),
groupname=”/fc/”+element_subgroup_dict[‘subgroup’][elm])
xr_{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm]).attrs[“Q_max”]
=(q_max_dict[xr_{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm])]
)
dicretize_xrf_(xr_{kinds[kind_idx]}_”string”+ str(element_subgroup_dict[‘subgroup’][elm]),nbins=xr_bins)
xrf_elm{kinds[kind_idx]}_”string”+str(element_subgroup_dict[‘subgroup’][elm])=””
try :
dicretize_sweeps(sweeps_lst,bins=default_bins,binnedir=binnedir)
except Exception as E :
print(E.__class__)
print(E.args)
print(” sweaps were probably already dicretized “)
plot_init sweepparameters=[“angle_offset”,”angle_range”,”det_distance”]
plot_param_excludedFromInit=[“azimuthal_integration”,”ring”]
# plot_init kind_specific_params={}
plot_init name_excl=[“azimuthal_integartion”]
plot_init interactive=False# In[41]:
fig xrca_groupbynelem_single_plot(df_experiment_information_[experiment_name][“element”],xrca_groupbynelem_single_res[experiment_name],
xslice=[{},{‘value’:0}],yslice=[{‘value’:-np.inf},{‘value’:np.inf}],colormap=’jet’)
fig xrca_groupbymotley_single_plot(df_experiment_information_[experiment_name][“motley”],xrca_groupbymotley_single_res[experiment_name],
xslice=[{},{‘value’:0}],yslice=[{‘value’:-np.inf},{‘value’:np.inf}],colormap=’jet’)# In[42]:
###extract relevant plots ###TODO extract methods ###
from pymatgen.io.vasp import Vasprun
from pymatgen.io.vasp.outputs import Outcar# In[43]:
if os.path.exists(‘results/’+experiment_name+’/static’) != True :
os.mkdir(‘results/’+experiment_name+’/static’)
if os.path.exists(‘results/’+experiment_name+’/dynamic’) != True :
os.mkdir(‘results/’+experiment_name+’/dynamic’)try :
vrun_lst=[]
outcar_lst=[]
for vrun_path,outcar_path,gamma_path,kappa_path,magmom_path,dmagmom_path,fmagmom_path,
eigenval_path,eigenval_up_path,eigenval_down_path,spectrum_up_path,spectrum_down_path,
magnetisationx_outofplane_outofplane_up,magnetisationy_outofplane_outofplane_up,magnetisationz_outofplane_outofplane_up,
magnetisationx_outofplane_outofplane_down,magnetisationy_outofplane_outofplane_down,magnetisationz_outofplane_outofplane_down,
in_magnetic_order_lst,in_non_magnetic_order_lst,in_magnetic_order_spinup_lst,in_non_magnetic_order_spinup_lst,in_magnetic_order_spindown_lst,in_non_magnetic_order_spindown_lst,
in_spinflip_spinup_lst,in_spinflip_spindown_lst,in_flip_spinflip_spinup_lst,in_flip_spinflip_spindown_lst,
in_energy_diff_per_atom,in_magmom_diff_per_atom,in_dmagmom_diff_per_atom,in_fmagmom_diff_per_atom,
in_eigenval_diff_per_band_at_energy_min_per_atom,in_eigenval_diff_per_band_at_energy_max_per_atom,
in_spectrum_diff_per_band_at_energy_min_per_atom,in_spectrum_diff_per_band_at_energy_max_per_atom,
in_density_difference_charge_density_tot,outcar_vbm,outcar_cbm,vbm_all_cbm_all,vbm_all_cbm_all_efermi,efermi_all,vbm_up_all,vbm_down_all,cmb_up_all,cmb_down_all,vbm_up_vbm_down,cmb_up_cmb_down,efermi,efermi_up,efermi_down,vbm,cmb,diff_vbm_vbm,diff_cmb_cmb,diff_vbm_cmb,diff_efermi_efermi,diff_vbmc_efermi,diff_cbme_efermi,diff_vbme_vbmc,diff_cbme_cbmc
in magnetic_order_info_df_nonspinflip_df_static_df_dynamic_df_comparespinflip_df_compareflipspinflip_df_comparespinflipvsmagorder_df_compareflipspinflipvsmagorder_df_comparespinflipvsmagordercomparespinflip_df_compareflipspinflipvsmagordercomparespinflip_df_magorderdiffperatom_df_magorderdiffperbandatenergyminperatom_df_magorderdiffperbandatenergymaxperatom
in magnetic_order_info_dynamic_df_static_df_dynamic_df_comparespinflip_df_compareflipspinflip_df_comparespinflipvsmagordercomparespinflip
in density_difference_charge_density_tot_static_density_difference_charge_density_tot_dynamic_density_difference_charge_density_tot_comparespinflip
in density_difference_charge_density_tot_static_density_difference_charge_density_tot_dynamic_density_difference_charge_density_tot_compareflipspinflip
in density_difference_charge_density_tot_static_density_difference_charge_density_tot_dynamic_density_difference_charge_density_tot_comparespinflipvsmagordercomparespinflip :
vrun_=Vasprun(vrun_path,_parse_potcar_file=False,**vasprun_args)
outcar_=Outcar(outcar_path,**outcar_args)except FileNotFoundError :
print(“No static calculation files found”)
else :
vrun_lst+=[vrun_]
outcar_lst+=[outcar_]
try :
for vrun_,outcar_,gamma_,kappa_,magmom_,dmagmom_,fmagmom_,eigenval_,eigenval_up_,eigenval_down_,spectrum_up_,spectrum_down_,magnetisationx_outofplane_outofplane_up,magnetisationy_outofplane_outofplane_up,magnetisationz_outofplane_outofplane_up,magnetisationx_outofplane_outofplane_down,magnetisationy_outofplane_outofplane_down,magnetisationz_outofplane_outofplane_down,
magnetic_order_info_static_df,magnetic_order_info_dynamic_df,magnetic_order_info_comparespinfipdf,density_difference_charge_denisty_tot_static_dataframe,density_difference_charge_denisty_tot_dynamic_dataframe,density_difference_charge_denisty_tot_comparerespinfipdf
gamma,kappa,magmom,dmagmom,fmagmom,eigenval,eigenval_up,eigenval_down,spectrum_up,spectrum_dn
magnetisationx=magnetisationx[magnetic_structure_type][static][outoffplanecomponent][upordown][direction],
magnetisationy=magnetisationy[magnetic_structure_type][static][outoffplanecomponent][upordown][direction],
magnetisationz=magnetisationz[magnetic_structure_type][static][outoffplanecomponent][upordown][direction],
eigenvectors=eigenvectors[eigenvectorstype][‘values’],energies=eigenvectors[eigenvectorstype][‘energies’],projections=eigenvectors[eigenvectorstype][‘projections’]
volume=volumes[volumetype][‘volume’],pressure=volumes[volumetype][‘pressure’]
efermi=outcars[outcartype][‘efermi’],vbm=outcars[outcartype][‘vbm’],cbm=outcars[outcartype][‘cbm’]
staticfilepath=os.path.join(staticpath,’vasprun.xml’),outcarfilepath=os.path.join(staticpath,’OUTCAR’),densitydifferencefilepath=os.path.join(staticpath,’DIFFCHGCAR’),dosfilepath=os.path.join(staticpath,’Dos.xml’),dielectricsfilepath=os.path.join(staticpath,’epsilon_ij.dat’),bornscorrfilepath=os.path.join(staticpath,’BORN’) :except FileNotFoundError :
print(“No dynamic calculation files found”)
else :
vrun_dynlst+=[vrun_]
outcar_dynlst+=[outcar_]for vrun,outcar,gamma,kappa,magmom,dmagmom,fmagmom,eigenvals,eigenvals_up,eigenvals_dn,spectra_up,spectra_dn,
volume,presure,efermi,vbm,cmb,volume_pressure={},dos={},bornscorr={} ,densitydifffilepaths=[],dosfilepaths=[],bornscorrfilepaths=[] ,**kwargs_getattr_vaspruns_args_getattr_Vaspruns_kwargs_getattr_Outcars_kwargs_getattr_Outcars_getattr_DensityDifferenceChargeDenistyTot_getattr_DensityDifferenceChargeDenistyTot_kwargs_getattr_DensityDifferenceChargeDenistyTot_kwargs_getattr_DOS_kwargs_getattr_BornScorr_kwargs :try :
except FileNotFoundError :
else :
try :
except FileNotFoundError :
else :
print(“No static calculation files found”)
print(“No dynamic calculation files found”)
###extract relevant plots ###TODO extract methods ###
if os.path.exists(os.path.join(‘results/’, experiment_name,’static’,’vasprun.xml’))!=True :
try :
except FileNotFoundError :
else :
try :
except FileNotFoundError :try :
except FileNotFoundError :else :
print(“No static calculation files found”)
print(“No dynamic calculation files found”)
###extract relevant plots ###TODO extract methods ###
if os.path.exists(os.path.join(‘results/’, experiment_name,’dynamic’,’vasprun.xml’))!=True :
try :
except FileNotFoundError :
else :
try :
except FileNotFoundError :try :
except FileNotFoundError :
else :
print(“No static calculation files found”)
print(“No dynamic calculation files found”)## Your task Refactor long lines containing many parameters into shorter lines grouped logically together ##