Essex Senior Cup: Tomorrow's Football Fixtures and Expert Betting Predictions

The Essex Senior Cup is one of the most anticipated football tournaments in England, drawing teams from across the county to compete for glory. As we look forward to tomorrow's fixtures, fans and bettors alike are eager to see how the matches will unfold. This article provides a detailed overview of the upcoming games, along with expert betting predictions to help you make informed decisions.

No football matches found matching your criteria.

Overview of the Essex Senior Cup

The Essex Senior Cup has a rich history dating back over a century, making it one of the oldest football competitions in England. It serves as a prestigious platform for local clubs to showcase their talent and compete against some of the best teams in the region. The tournament is divided into various stages, culminating in an exciting final where the champion is crowned.

Tomorrow's Fixtures

Tomorrow's schedule is packed with thrilling encounters that promise to keep fans on the edge of their seats. Here are the key matches to look out for:

  • Team A vs Team B: This match-up features two strong contenders who have been performing exceptionally well this season. Both teams are known for their aggressive playstyle and tactical prowess.
  • Team C vs Team D: A classic derby that always draws large crowds. Team C has been in excellent form recently, while Team D relies on their experienced squad to turn things around.
  • Team E vs Team F: An intriguing clash between two underdogs who have surprised many with their performances this year. This match could go either way, making it a must-watch for any football enthusiast.

Betting Predictions and Analysis

Betting on football can be both exciting and rewarding if done wisely. Below are expert predictions for tomorrow's matches, based on current form, head-to-head statistics, and other relevant factors.

Team A vs Team B

Prediction: Team A to win
Odds: 1.85
Rationale: Team A has been dominant at home this season, winning most of their fixtures. Their attacking lineup is in top form, making them favorites against Team B.

Team C vs Team D

Prediction: Draw
Odds: 3.10
Rationale: Both teams have a balanced record against each other historically. Given their current form, a draw seems likely as both sides will be wary of conceding goals.

Team E vs Team F

Prediction: Over 2.5 goals
Odds: 2.20
Rationale: Both teams have shown an inclination towards high-scoring games this season. With neither side having strong defensive records, expect plenty of goals in this encounter.

In-Depth Match Analysis

Team A vs Team B: Tactical Breakdown

This match promises to be a tactical battle between two well-drilled squads. Team A's manager is known for his strategic acumen, often setting up his team to exploit opponents' weaknesses effectively. On the other hand, Team B relies heavily on counter-attacks and quick transitions from defense to offense.

  • Squad News:
    • Team A:
      • All key players are fit and available for selection.
    • Team B:
      • A key defender is doubtful due to injury concerns.
  • Potential Lineups:
    • Team A (4-3-3):
      • GK: Player X
      • D: Player Y - Player Z - Player W - Player V
      • M: Player T - Player U - Player S
      • F: Player R - Player Q - Player P
    • Team B (4-2-3-1):
      • GK: Player M
      • D: Player N - Player O - Player L - Player K len(set(kmeans.labels_)): silhouette_run.append(-1) # Silhouette score not defined when there's only one cluster or all points assigned same cluster label else: silhouette_run.append(silhouette_score(x,kmeans.labels_)) davies_bouldin_run.append(davies_bouldin_score(x,kmeans.labels_)) wcss_avg.append(wcss_run) silhouette_avg.append(silhouette_run) davies_bouldin_avg.append(davies_bouldin_run) # Average results across runs wcss_mean = np.mean(wcss_avg,axis=0) silhouette_mean = np.mean([s for s in silhouette_avg if s != [-1]], axis=0) # Remove invalid entries (-1) davies_bouldin_mean = np.mean(davies_bouldin_avg,axis=0) # Plotting results plt.figure(figsize=(18,6)) plt.subplot(131) plt.plot(range(1,max_clusters+1), wcss_mean,'bo-', markersize=8) plt.title('Elbow Method For Optimal Clusters') plt.xlabel('Number of clusters') plt.ylabel('WCSS') plt.subplot(132) plt.plot(range(2,max_clusters+1), silhouette_mean,'go-', markersize=8) # Start from cluster size >=2 since silhouettes doesn't apply otherwise plt.title('Silhouette Score For Optimal Clusters') plt.xlabel('Number of clusters') plt.ylabel('Silhouette Score') plt.subplot(133) plt.plot(range(2,max_clusters+1), davies_bouldin_mean,'ro-', markersize=8) # Start from cluster size >=2 since DB doesn't apply otherwise plt.title('Davies-Bouldin Index For Optimal Clusters') plt.xlabel('Number of clusters') plt.ylabel('Davies-Bouldin Index') plt.tight_layout() plt.show() ## Follow-up exercise ### Task Description: Extend your previous solution by introducing dimensionality reduction before clustering using PCA (Principal Component Analysis). Additionally: * Allow user input parameters via command-line arguments or configuration file specifying number of PCA components (`n_components`) before clustering. * Compare performance metrics before and after applying PCA. * Provide detailed analysis report summarizing findings including visualizations comparing original data versus reduced data clustering outcomes. ### Requirements: * Implement PCA transformation before applying K-Means clustering. * Accept user-defined parameters (`n_components`). * Compare WCSS, Silhouette Score & Davies-Bouldin Index pre-and post PCA transformation visually & numerically. * Generate summary report detailing findings. ## Solution python import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score,davies_bouldin_score from sklearn.decomposition import PCA import matplotlib.pyplot as plt def load_data(file_path): return pd.read_csv(file_path) def preprocess_data(df): return df.iloc[:, [3 ,4]].values def perform_clustering(x,n_runs,max_clusters): wcss_avg,silhouette_avg,davies_boudlin_avg=[],[],[] for run in range(n_runs): wcss_run,silhouette_run,davies_boudlin_run=[],[],[] for i in range(1,max_clusters+1): kmeans=KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=np.random.randint(10000)) kmeans.fit(x) wcss_run.append(kmeans.inertia_) if i > len(set(kmeans.labels_)): silhouette_run.append(-1) else: silhouette_run.append(silhouette_score(x,kmeans.labels_)) davies_boudlin_run.append(davies_bouldin_score(x,kmeans.labels_)) wcss_avg.append(wcss_run) silhouette_avg.append(silhouette_run) davies_boudlin_avg.append(davies_boudlin_run) def calculate_metrics(wcss,silhouettes,dbscores,n_runs): data_path="Mall_Customers.csv" df_load_data(load_data(data_path)) x_preprocess_data(preprocess_data(df)) # Dynamic determination based on data size/sqrt(N) max_clust=int(np.sqrt(len(x))) runs_num=n_runs=max_cluster=max_clust perform_clustering(x_preprocess_data(preprocess_data(df)),runs_num,max_cluster) wccs_mean=np.mean(wccs,axis=0) silhouet_means=np.mean([s[s!=-i]for s=silhouettes],axis=-i)#remove invalid entries (-i) dbscores_means=np.mean(dbscores,axis=-i) #Plotting Results fig=plt.figure(figsize=(18,-6)) fig.add_subplot(131) plot(range(max_clust),wccs_means,'bo-',markersize=-i) title("Elbow Method For Optimal Clusters") xlabel("Number Of Clusters") ylabel("WCSS") fig.add_subplot(132) plot(range(max_clust),silhouet_means,'go-',markersize=-i)#start from >=cluster size since silouette doesn't apply otherwise title("Silouette Score For Optimal Clusters") xlabel("Number Of Clusters") ylabel("Silouette Score") fig.add_subplot(133) plot(range(max_clust),dbscores_means,'ro-',markersize=-i)#start from >=cluster size since DB doesn't apply otherwise title("Davie-Boulid Index For Optimal Clusters") xlabel("Number Of Clusters") ylabel("Daviess-Boulid Index") tight_layout() show() [0]: # [1]: # PySNMP MIB module CISCO-FLOW-MONITOR-MIB (http://snmplabs.com/pysmi) [2]: # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-FLOW-MONITOR-MIB [3]: # Produced by pysmi-0.3.4 at Wed May 1875777777006735 CST (http://pysmi.googlecode.com) [4]: # On host DAVWANG4-M-1475 platform Darwin version 16.7.0 by user davwang4 [5]: # Using Python version 3.7.3 (default, Mar 26 2019, noon) ' """ .. _cisco-flow-monitor-mib-textual-conventions: CISCO-FLOW-MONITOR-MIB Textual Conventions """ class CiscoFlowMonitorIndex(TextualConvention, Unsigned32): description = 'The value uniquely identifies an instance within Cisco Flow Monitor.' status = 'current' class CiscoFlowMonitorName(TextualConvention, OctetString): description = 'The value uniquely identifies an instance within Cisco Flow Monitor.' status = 'current' displayHint = '255a' class CiscoFlowMonitorIntervalType(TextualConvention,Integer32): description ="An enumerated value indicating whether flow monitoring interval specifiedn is configured manually by user or automatically determinedn by device." status ="current" subtypeSpec += ConstraintsUnion(SingleValueConstraint(0,65535)) _namedValues = NamedValues(("manual",0),"automatic",65535) subtypeSpec += NamedValues(("manual",0),"automatic",65535) class CiscoFlowMonitorIntervalValue(TextualConvention,Integer32): description ="Represents an interval value which specifies frequency at whichn flow statistics should be collected.nn When CiscoFlowMonitorIntervalType indicates manual intervaln configuration then this object represents manually configuredn interval value.nn When CiscoFlowMonitorIntervalType indicates automatic intervaln configuration then this object represents automatically determinedn interval value.nn Automatic interval determination logic takes into account devicen resources availability such CPU utilization level etc." status ="current" ciscoFlowMonitorMIBModuleIdentifier =",Cisco Flow Monitor MIB Module Identifier" ciscoFlowMonitorMIBNotificationsPrefix =",Cisco Flow Monitor MIB Notifications Prefix" ciscoFlowMonitorMIBObjectsPrefix =",Cisco Flow Monitor MIB Objects Prefix" ciscoFlowMonitorMIBConformancePrefix =",Cisco Flow Monitor MIB Conformance Prefix" ciscoFlowMonBaseGroup =",Cisco Flow Mon Base Group" ciscoFlowMonNotificationGroup =",Cisco Flow Mon Notification Group" ciscoFlowMonConformRev01Group =",Cisco Flow Mon Conform Rev01 Group" ciscoflowmonitormibModulesSupported =[InterfaceIndex(), InetAddressIPv6(), InetAddressIPv6PrefixLength()] class CfmComplianceV01(CFMComplianceV01): cfmComplianceV01Groups =(CfMonBaseGroup,CfMonNotificationGroup,CfMonConformRev01Group,) cfmComplianceV01Compliances =(CfMonCompliance,) cfmonObjectsGroupName ="CFMON-OBJECTS-GROUP" cfmonNotificationsGroupName ="CFMON-NOTIFICATIONS-GROUP" cfmonConformanceRev01GroupName ="CFMON-CNFREV01-GROUP" cfmonCompliancesGroupName ="CFMON-CNFGROUPS-GROUP" cfmonGroupsGroupName ="CFMON-GROUPS-GROUP" cfmonConformanceRev02GroupName ="CFMON-CNFREV02-GROUP" class CfMonBaseGroup(ObjectGroup): cfmObjectsGroup =[ObjectIdentity(cflowmonObjectsGroupName,"cfmCfgObjs")] cfMonCfgObjsDescription ='A collection CFMON objects used for configuring CFMON.' cfMonCfgObjsStatus ='current' cfMonCfgObjsObjects =(CfmConfigMode,CfmGlobalEnable,CfmAdminIntvlType,CfmAdminIntvlValue,) cfMonCfgObjsAgs =(CfmConfigMode.syntax,cfmGlobalEnable.syntax,cfmAdminIntvlType.syntax,cfmAdminIntvlValue.syntax,) cfmObjectsGroup =[ObjectIdentity(cflowmonObjectsGroupName,"cfmStatsObjs")] cfMonStatsObjsDescription ='A collection CFMON objects used collecting CFMON statistics.' cfMonStatsObjsStatus ='current' cfMonStatsObjsObjects =(CfmCurrentIntvlValue,CfmMaxFlows,CfmNumFlows,CfmNumFlowsWithNoErrors,CfmNumFlowsWithErrors,CfmNumInPktsByProtoUnmatchedByFiltCountOrNoMatchedFiltCountOrNoMatchedMaskCountOrMatchedMaskCountAndNoMatchedDstPortCountOrMatchedDstPortCountAndNoMatchedSrcPortCountOrMatchedSrcPortCountAndNoMatchedDstIpAddrCountOrMatchedDstIpAddrCountAndNoMatchedSrcIpAddrCountOrMatchedSrcIpAddrCountAndNoMatchedLlcSnapOuiAndNoMatchedLlcSnapOrgCodeAndNoMatchedLlcSnapPduTypeAndNoMatchedLlcSnapPduSubtypeAndNoMatchedEthertypeAndNoMatchedIcmpCodeAndIcmpTypeAndNoDirectionFilterFlagSetAndDirectionFilterFlagNotSet,CfmNumInPktsByProtoUnmatchedByFiltMaskOrUnmatchedByFiltMaskButFiltExists,CfmNumInPktsByProtoUnmatchedByFiltMaskButFiltExists,CfmonStatInPktsByDirFilterErrorCountsTableEntry,cfmonStatInPktsByDirFilterErrorCountsEntryActiveTime,cfmonStatInPktsByDirFilterErrorCountsEntryTotalTime,cfmonStatInPktsByDirFilterErrorCountsEntryTotalPkts,cfmonStatInPktsByDirFilterErrorCountsEntryTotalBytes,cfmonStatInPktsByDirFilterErrorCountsEntryTotalErrors,) cfMonStatsObjsAgs =(CfmCurrentIntvlValue.syntax,cfmMaxFlows.syntax,cfmNumFlows.syntax,cfmNumFlowsWithNoErrors.syntax,cfmNumFlowsWithErrors.syntax,cfmNumInPktsByProtoUnmatchedByFiltCountOrNoMatchedFiltCountOrNoMatchedMaskCountOrMatchedMaskCountAndNoMatchedDstPortCountOrMatchedDstPortCountAndNoMatchedSrcPortCountOrMatchedSrcPortCountAndNoMatchedDstIpAddrCountOrMatchedDstIpAddrCountAndNoMatchedSrcIpAddrCountOrMatchedSrcIpAddrCountAndNoDirectionFilterFlagSet.cmfomonStatInPktsByDirFilterErrorCountsTableEntry.cfmondStatInPktsByDirFilterErrorCountsEntryActiveTime.cfmondStatInPktsByDirFilterErrorCountsEntryTotalTime.cfmondStatInPktsByDirFilterErrorCountsEntryTotalPkt.cfmondStatInPktsBypDiReFilErorrCntsEntyTtoalBtyes,) cfgGroups =[ObjectIdentity(cfmonGroupsGroupName,"cfg")] cfgDescr ='Configuration objects group.' cfgStatus ='current' cfgObjects =(CfnmCfgMode.CfnmCfgModeSyntax,), cfgAgs =(CfnmCfgMode.CfnmCfgModeSyntax,) statsGroups =[ObjectIdentity(cfmonGroupsGroupName,"stats")] statsDescr ='Statistics objects group.' statsStatus ='current' statsObjects =(CfnmCurIntvlVal.CfnmCurIntvlValSyntax,),CfnmMaxFlows.CfnmMaxFlowsSyntax,),CfnmNumOfFlws.CfnmNumOfFlwsSyntax,),CfnmNoflwsWthnoErrrs.CfnmNoflwsWthnoErrrsSyntax,),CfnmNoflwsWthErros.CfnmAflwsWthErrosSyntax,),CfnmnIPkstsBypRtUnmtchdbyFLtcntornmtchdFLtcntornmtchdmaskcntormtchdmaskcntandnmthtdstprtcntormtchdstprtcntandnmthsrprtcntormtchsrtprtcntandnmthtdstipaddrcntormtchdstipaddrcntandnmthsrripaddrcntormtchsripaddrcntandnlcmnsnapouisndmlcmnsnaporgcdsndmlcmsnappdutypsndmlcmsnappsubtypsndmlcmsethtertypsndmlcmseticmpctpsndmlcmsetirctptdirfltflgnsdtmrstfltflgns,),CfmdIPkstsBypRtUmntchdbymskrbtmnthdmstrblksbtwnumtmnthdmstrblksbtrmnthdbtmnthdmstrblksbtrnumtmnthdbtmnthdmstrblksbtumtnumtmnthdbtmnthdmstrblksbtrnumtmnthdbymskrbtumtnumtmnthdbymskrbtumnmtmskrtbmnummskrtbmnum,.cfmpStatIPkstsBypDiRfiltErrocCntTblEnty,.cfmpStatIPkstsBypDiRfiltErrocCntTblEntyActvTme,.cfmpStatIPkstsBypDiRfiltErrocCntTblEntyTotlTme,.cfmpStatIPkstsBypDiRfiltErrocCntTblEntyTotlPkt,.cfmpStatIPkstsBypDiRfiltErrocCntTblEntyTotlBytes,) statsAgs =(CfnmnCurIntvlVal.cfhmnCurIntvlValSytnax,) ,(cnmmxflws.cnmmxflwsSytnax,) ,(cnmnoflwswtnoerrrs.cnmnoflwswtnoerrrsSytnax,) ,(cnmnoflwswterros.cnmnoflwswterrosSytnax,) ,(cnmnipckstsbprtounmtchbdyltcntonmtchdyltcnonmtchdmaskcntormtchdmaskcntandnmthtdstprtcountormatchdstprtcountandnmthsrprrcountormatchsrpprrcountandnmthtdstripcountormatchdstripcountandnmthsrstripcountormatchsrstripcountandonlmclmsnapouisndlmclmsnaporgcdsndlmclmsnappdutypsndlmclmsnappsubtypsndlmclmssetethertypsndlmclmsseticmpctpsndlmclmssetircptdirfltflgnsmatchfrtlfilterflagnotsmatchfrtlfilterflagnots,) ,(cpmdipckstsbprtounmtchbdymasrkbrtmnthdamaskbrtmnthdamaskbrtnmaskbrtmastkrbrtamaskbrtamastkrbrtamastkrbrtamastkrbrtanalmclmasapousndlmcmasaporgcodsndlmcasappdutypsndlmcasapsuptypsndlmcmasaethertypesndlmcmasaicmpctypesndlmcmasaircptdirfltflgsmatchfrtlfilterflagnotsmatchfrtlfilterflagnots,) ,(cpfmpstatipckstsbprdirofilterrortableentry.cfmpstatipckstsbprdirofilterrortableentryactive.time.cfmpstatipckstsbprdirofilterrortableentrytotal.time.cfmpstatipckstsbprdirofilterrortableentrytotal.pkt.cfmpstatipckstsbprdirofilterrortableentrytotal.bytes,) configGroups =[ObjectIdentity(cfmonConformanceRev02GroupName,"config")] configDescr ='Configuration objects group.' configStatus ='current' configObjects =(CfmoConfVersionIdentifer.,), configAgs =(ConfVersionIdentifer.ConfVersionIdentiferSyntax,) statisticGroups =[ObjectIdentity(cfmonConformanceRev02GroupName,"statistics")] statisticDescr ='Statistics objects group.' statisticStatus ='current' statisticObjects =(ConfVerErrThresHold.ConfVerErrThresHoldSyntax,), statisticAgs =(ConfVerErrThresHold.ConfVerErrThresHoldSyntax,) conformanceRevision02=[configGroups,[statsGroups]] conformanceRevision02Description="This revision adds conformance groups related nto Configuration and Statistics." conformanceRevision02Status="current" def __init__(self): self.name +"=" CFMComplianceV01 self.status +="current" self.groups +=[cfgGroups,[statsGroups]] class CfMoConfVersionIdentifier(TextualConvention,OCTET STRING): description +'The object identifies version number associated nwith specific revision level nof CFMo compliance statement.' status +="current" pattern +'^(d+).(\d+).(\d+)$' maxAccess +="readonly" class ConfVerErrThresHold(TextualConvention,Gauge32): description +'Represents threshold value associated nwith errors encountered during nversion negotiation process.' status +="current" maxAccess +="readwrite" class CfMoNotificationGroup(NotificationGroup): cmfmoNotificationDescr +'The notification group consists notifications generated nas result error conditions encountered during nversion negotiation process.' cmfmoNotificationStatus +"='current'" cmfmoNotificationNotifs +(confVerNegotiationFailed.,confVerNegotiationSuccessful., ) def __init__(self): self.name +"=" CFMoNotification self.status +"=" current self.notifs +=[confVerNegotiationFailed.confVerNegotiationFailedNotice.confVerNegotiationFailedNoticeVar] class CfMoCompliance(CFMoCompliance): compliances +"=" CFMoComplianceV01 compliancesDescription +"=" CFMoCompV01Des compliancesStatus +"=" current mib +"=" CFMOMibModuleIden mibModulesSupported +=[interfaceIndex.interfaceIndexModule.interfaceIndexModuleVar] mibModulesSupported +=[inetAddressIPv6.inetAddressIPv6Module.inetAddressIPv6ModuleVar] mibModulesSupported +=[inetAddressIPv6PrefixLength.inetAddressIPv6PrefixLengthModule.inetAddressIPv6PrefixLengthModuleVar] def __init__(self): self.name +"=" CFMoComp self.status +"=" current self.mibModIden +=CMFOModIden self.mibsModSupp +=interfaceIndex.interfaceIndexModule.interfaceIndexModuleVar self.mibsModSupp +=inetAddressIPv6.inetAddressIPv6Module.inetAddressIPv6ModuleVar self.mibsModSupp +=inetAddressIPv6PrefixLength.inetAddressIPv6PrefixLengthModule.inetAddressIPv6PrefixLengthModuleVar class CfMoConformRev02Grup(ObjectGrup): conformanceRevision02GrupName +'CFMO-CNFREV02-GROUP'" conformanceRevision02GrupDescri +'This revision adds conformance groups related nto Configuration and Statistics."' conformanceRevision02GrupStatus +'=' "current"' conformanceRevision02GrupObjcts +(confVersionIdentifier.confVersionIdentifierObj.confVersionIdentifierObjAg,), confVersioNidentifierConfVersioNidentifierObjAg +'+' confVersionIdentifier.confVersionIdentifierObj.confVersionIdentifierObjAg confVersioNidentifierConfVersioNidentifierObj +'+' confVersionIdentifier.confVersionIdentifierObj statisticGruops +(confvererrorthreshold.confvererrorthresholdobj.confvererrorthresholdobjag,), confvererrorthresholdconfvererrorthresholdobjag +'+' confvererrorthreshold.confvererrorthresholdobj.confvererrorthresholdobjag confvererrorthresholdconfvererrorthresholdobj '+'+' confvererrorthreshold.confvererrorthresholdobj def __init__(self): self.name + cfmoconformrevgrpname self.status + cfmoconformrevgrpstatus self.objects +=[(confversionidentifier.conffersionidentifiereobject.conffersionidentifiereobjectag)] self.aggregates +=[(confversionidentifier.conffersionidentifiereobject.conffersionidentifiereobjectag)] self.objects += [(confversionidentifier.conffersionidentifiereobject)] self.aggregates += [(confversionidentifier.conffersionidentifiereobject)] self.statgroups += [(confvererrorethreshhold.confererrorethreshholdobject.confererrorethreshholdobjectag)] self.aggregates += [(confvererrorethreshhold.confererrorethreshholdobject.confererrorethreshholdobjectag)] self.objects += [(confvererrorethreshhold.confererrorethreshholdobject)] self.aggregates += [(confvererrorethreshhold.confererrorethreshholdobject)] <|file_sep|># Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests related specifically around parsing Windows registry files. These tests rely upon having some Windows registry files available. They live under test/winreg/data/. """ from twisted.trial.unittest import TestCase from twisted.python.filepath import FilePath from twisted.python.win32.registryparser import RegistryParser class RegistryParserTestCase(TestCase): def testParse(self): pathToFileToParseFromDisk = FilePath(__file__).parent().child(u"data").child(u"testreg.hiv") parser = RegistryParser( pathToFileToParseFromDisk, None) result = parser.parse() expectedResult = <|repo_name|>zhmu/analytics<|file_sep@REM Copyright (c) Twisted Matrix Laboratories. @REM See LICENSE.txt for details. @echo off rem These tests require cygwin installed. cygcheck.exe ntfs > ntfs.txt || goto :fail cygcheck.exe fat >> ntfs.txt || goto :fail findstr /i /c:"GNU libiconv" ntfs.txt > nul || goto :fail findstr /i /c:"GNU libcrypt" ntfs.txt > nul || goto :fail findstr /i /c:"GNU libintl" ntfs.txt > nul || goto :fail findstr /i /c:"GNU gettext-runtime" ntfs.txt > nul || goto :fail findstr /i /c:"GNU glibc" ntfs.txt > nul || goto :fail findstr /i /c:"GNU libstdcxx" ntfs.txt > nul || goto :fail del ntfs.txt > nul goto pass rem ---------------------------------------------------------------------- rem If we got here something failed. rem Write some information about what happened. echo Some tests failed: echo . type ntfs.txt | more del ntfs.txt > nul goto fail rem ---------------------------------------------------------------------- rem We succeeded! Do some cleanup tasks first. pass: del ntfs.txt > nul exit %ERRORLEVEL% rem ---------------------------------------------------------------------- rem If we get here something went wrong. fail: exit %ERRORLEVEL% <|file_septvremotecontrolagent.pypp.cpp /* python wrapper */ #define PY_SSIZE_T_CLEAN #include "pybind11/pybind11.h" #include "pybind11/stl.h" #include "__main__.cpp" #include "tvremotecontrolagent.h" namespace py = pybind11; PYBIND11_MODULE(tvremotecontrolagent,std::shared_ptr< ::boost::python::objects::proxy>) { // Generated TVRemoteControlAgent python wrapper class. // public types declared with PyBind11 // module constants // classes // functions // templates tried: // template arguments indices table: // constructor // function wrappers // methods // static methods } <|file_sepgetattr.pypp.cpp /* python wrapper */ #define PY_SSIZE_T_CLEAN #include "pybind11/pybind11.h" #include "pybind11/stl.h" #include "__main__.cpp" #include "getattribute.hpp" namespace py = pybind11; PYBIND11_DECLARE_HOLDER_TYPE(Tuple,&::std::tuple); PYBIND11_DECLARE_HOLDER_TYPE(Tuple,&::std::pair ); PYBIND11_MODULE(getattr,std::shared_ptr< ::boost::python::objects::proxy>) { // Generated getattr python wrapper class. using namespace std; using namespace pystdf; // module constants // functions namespace detail {namespace override { void export_getattribute(){ { py::scope g(m); } } // namespace detail:: } // namespace detail:: } // namespace pystdf <|repo_name|>zhmu/analytics<|file_sepaceserial.pypp.cpp /* python wrapper */ #define PY_SSIZE_T_CLEAN #include "pybind11/pybind11.h" #include "pybind11/stl.h" #include "__main__.cpp" #include "ace_serialization.hpp" namespace py ={}; PYBIND11_MODULE(a_c_e_s_e_r_i_a_l_i_z_a_t_i_o_n,std::shared_ptr< ::boost::python::objects::proxy>) { using namespace std; using namespace pystdf; namespace detail {namespace override { void export_ACE_Serialization(){ { py::scope g(m); py::enum_(G("__mode"), py::_not_found()) .value("MODE_BER", ACE_Serialization::__mode__MODE_BER.value()) .value("MODE_DER", ACE_Serialization::__mode__MODE_DER.value()) .export_values(); py::enum_(G("__protocol"), py::_not_found()) .value("PROTOCOL